End-to-End Secure Messaging

Trevor Perrin

Stanford Security Seminar
Some projects

• TextSecure
 – Text messaging for smartphones
 – Moxie Marlinspike (Open Whisper Systems)
 – https://whispersystems.org/

• Pond
 – Email-like messaging that resists traffic analysis
 – Adam Langley
 – https://pond.imperialviolet.org/
General Approach

• Message protocols (PGP, S/MIME)
 – Asynchronous, long-lived conversations
 – Problems: Conversation integrity, forward secrecy, deniability

• Session protocols (OTR, SSL, SSH)
 – Synchronous, short-lived sessions

• Blend (TextSecure, Pond)
 – Asynchronous, long-lived sessions
General Approach - infrastructure

• Use where needed:
 – Contact discovery
 – Mailbox servers
 – Posting async handshake messages
 – Anonymity networks
 – Transparency logs

• But don’t trust it
Problems

• Basic
 – Contact and Key Discovery
 – Authentication
 – Handshaking
 – Forward-secrecy ratcheting

• Advanced
 – Unobservability
 – Multi-party
 – Multi-device
Contact and Key Discovery

• Manual
 – “Hi, I use PGP, here’s my key”

• Signalling
 – Email headers, whitespace tagging, etc.
 – Hard to integrate; gives incomplete view

• Server lookup
 – “Here’s all my contacts, who can I encrypt to?”
 – Private Information Retrieval?
Authentication

• Key continuity
 – E.g. TOFU, then warn on changes

• Key fingerprints
 – QR codes work well; other encodings need study
 (hex vs base32 vs words vs sentences vs images…)

• Short Auth Strings? Shared Knowledge Qs? Certificate Transparency?
Certificate Transparency (adapted)

Centralized Service

Services publishes name/key map as hash tree

Alice retrieves hash-tree root

3rd-party Monitors

Bob is notified when a new key is published for him

Alice

Bob
Handshaking

• Publish ephemeral “pre-keys”
• Alice can send after fetching Bob’s pre-key
• Needs async-friendly, deniable key agreement
 — E.g. “TripleDH”:

```
Alice Static               Bob Static
   /  \                        /  \  \
Alice Ephemeral            Bob Ephemeral
```

Forward Secrecy Ratcheting

• Symmetric-key ratchet
 – Replace key after processing each message (e.g. SCIMP)
 – Secure deletion?

• DH ratchet
 – Replace key on exchange of new DH values (e.g. OTR)

• “Axolotl” ratchet
 – Combines symmetric + DH ratchet
 – Supports out-of-order messages, and header encryption (e.g. Pond)
Axolotl Ratchet

ECDH(A1,B0) +
 /
 /
 /
 / + ECDH(A1,B1)

CK-A1-B0

MK-0 ----+

MK-1 ----+

MK-2 ----+

ECDH(A2,B1) +
 /
 /
 /
Advanced Topics
Unobservable message transport

• Mailbox authenticates messages but can’t distinguish senders
• Recipient can recognize and revoke senders
• Group sigs vs. one-time signing keys
Unobservable bootstrapping

• How to exchange message-transport secrets?

• Use conventional messaging
 – Reveals who, but not when / how much

• Face-to-face (Bluetooth, QR codes)

• Online rendezvous based on shared secret
• Alice and Bob share a secret, use to derive meeting slot at rendezvous server ("PANDA")

• Attacker could observe parties sending rendezvous traffic; perhaps mask w/dummy traffic?
Online rendezvous via fingerprints?

- Exchange fingerprints instead of secrets
- Use fingerprints to lookup short-lived DH keys
Anonymity net = Tor (Pond)

- Tor vulnerable to in/out correlation
- Sender/recipient correlation broken at mailbox/recipient end
- Sender/mailbox correlation remains (only ~1 mailbox server at present)
Anonymity net = high-latency mix??

- Random timing, padded?
- High-latency mix network (+Tor)?
- Mailbox
- Random timing, padded?
- Sender
- Recipient

- Breaks sender/mailbox correlation
- Traffic-flow measures at sender and receiver could mask send/receive volume
Multi-party: key agreement

• Group Key Agreement + Signatures
 – mpOTR = deniable signing keys
 – More handshaking; smaller messages

• Pair-wise
 – Less handshaking; larger messages; better ratcheting

• Answer may depend on context
 – Broadcast? More bandwidth up than down? Mailbox servers?
Multi-party: new attacks

• Different messages could be sent to different recipients

• Messages could be re-ordered to change their context

• Messages could be deleted or delayed

• **Result:** Messages (or their absence!) misunderstood due to manipulated context
Multi-party: transcript consistency

• Messages could declare their “causal predecessors” and a hash over them

• Lots of details:
 – Displaying partially-ordered messages?
 – Detecting silenced users / delayed messages?
 – Handling join / leave?
 – What amount of delay / reordering is tolerable?
Multi-device

• Build on multi-party, treating each device as separate party

• Reveals number of devices and when they’re being used

• Alternatively, sync ratchet between devices?
Thanks!

- These projects (and others!) need your help

- Lots of ways to participate:
 - https://github.com/whispersystems/textsecure/
 - https://github.com/agl/pond

- Messaging mailing list
 - https://moderncrypto.org